DOI: $\underline{10.4081 / m r m .2022 .824}$

Long-term benefits of a new oral appliance on adult snoring: A trend analysis

Jui-Kun Chiang, ${ }^{1}$ Yen-Chang Lin, ${ }^{2}$ Hsiao-Chen Yu, ${ }^{2}$ Chih-Ming Lu, ${ }^{3 *}$ Yee-Hsin Kao ${ }^{* *}$

*These authors contributed equally
${ }^{1}$ Department of Family Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi
${ }^{2}$ Nature Dental Clinic, Puli Township, Nantou
${ }^{3}$ Department of Urology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi
${ }^{4}$ Department of Family Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan

Corresponding author: Yee-Hsin Kao, MD, Department of Family Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), 670 Chung Te Road, Tainan, 70173 Taiwan. E-mail: m2200767@gmail.com

Supplement 1. Codes for the predicting snoring rates based on the authors' model.

```
Logit of \((\mathrm{Y}=\) snoring rates \()=\)
-8.038
\(+(-0.630) *(\) LOA. 1 cm , yes \(=1, \mathrm{no}=0)\)
\(+(-5.037) *(\) LOA. 2.5 cm , yes \(=1\), no \(=0\) )
\(+2.516^{*}\) (daytime sleepiness, yes \(=1\), no \(=0\) )
\(+0.696^{*}\) (recording time within 5.5-7.5 hours, yes \(=1\), no \(=0\) )
\(+2.108 *\) (snoring rate(t-1), \(>10 \%\), yes \(=1\), no \(=0\) )
\(+1.673^{*}\) (snoring rate( \(\mathrm{t}-3\) ), \(>10 \%\), yes \(=1, \mathrm{no}=0\) )
\(+1.319 *\) (snoring rate( \(\mathrm{t}-5\) ), \(>10 \%\), yes \(=1, \mathrm{no}=0\) )
\(+0.987^{*}\) (snoring rate( \(\mathrm{t}-6\) ), \(>10 \%\), yes \(=1\), no \(=0\) )
\(+1.238 *\) (snoring rate(t-7), \(>10 \%\), yes \(=1\), no \(=0\) )
\(=\Sigma \mathrm{x}\)
\(\mathrm{Y} /(1-\mathrm{Y})=\exp (\Sigma \mathrm{x})\)
\(\mathrm{Y}=\exp (\Sigma \mathrm{x}) /(1+\exp (\Sigma \mathrm{x}))\)
```

For example, a patient with 6-hour sleep duration, daytime sleepiness, LOA-1, day t-1 snoring rate ($49^{\text {th }}$ day) $8 \%, \mathrm{t}-3$ snoring rate ($47^{\text {th }}$ day) 7%, $\mathrm{t}-5$ snoring rate ($45^{\text {th }}$ day) $8 \%, \mathrm{t}-6$ snoring rate ($44^{\text {th }}$ day) 20%, t-7 snoring rate ($43^{\text {rd }}$ day) 25%, and the $50^{\text {th }}$ day predictive snoring rate was 3.8%.

Logit of $(\mathrm{Y}=$ snoring rates $)=$
$\mathrm{X}=-8.038$
$+(-0.630)^{*} 1$ \# (LOA. 1 cm , yes $\left.=1, \mathrm{no}=0\right)$
$+(-5.037) * 0$ \# (LOA. 2.5 cm , yes $=1, \mathrm{no}=0)$
$+2.516^{*} 1$ \# (daytime sleepiness, yes $=1$, no=0)
$+0.696 * 1$ \# (recording time within 5.5-7.5 hours, yes $=1$, no=0)
$+2.108 * 0$ \# (snoring rate(t-1), $>10 \%$, yes $=1$, no=0)
$+1.673 * 0$ \# (snoring rate $(\mathrm{t}-3),>10 \%$, yes $=1$, no=0)
$+1.319 * 0$ \# (snoring rate(t-5), $>10 \%$, yes $=1$, no $=0$)
$+0.987 * 1$ \# (snoring rate(t-6), $>10 \%$, yes $=1$, no=0)
$+1.238 * 1$ \# (snoring rate(t-7), $>10 \%$, yes $=1$, no=0)
$\mathrm{X}=-3.231$
$\mathrm{Y} /(1-\mathrm{Y})=\exp (\mathrm{X})$
$\mathrm{Y}=\exp (\mathrm{X}) /(1+\exp (\mathrm{X}))$
$\mathrm{Y}=3.8 \%$

