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The OM-85 bacterial lysate: a new tool against SARS-CoV-2?

Vadim Pivniouk-'? Donata Vercelli'->3+*

!Department of Cellular and Molecular Medicine; *Asthma and Airway Disease Research Center; The BIOS Institute;
‘Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA

The emergence of SARS-CoV-2, a novel coronavirus, caused the global Coronavirus disease of 2019 (COVID-19)
pandemic. Because SARS-CoV-2 mutates rapidly, vaccines that induce immune responses against viral components
critical for target cell infection strongly mitigate but do not abrogate viral spread, and disease rates remain high world-
wide. Complementary treatments are therefore needed to reduce the frequency and/or severity of SARS-CoV-2 infec-
tions. OM-835, a standardized lysate of 21 bacterial strains often found in the human airways, has immuno-modulatory
properties and is widely used empirically in Europe, South America and Asia for the prophylaxis of recurrent upper
airway infections in adults and children, with excellent safety profiles. In vitro studies from our laboratory recently
demonstrated that OM-85 inhibits SARS-CoV-2 epithelial cell infection by downregulating SARS-CoV-2 receptor
expression, raising the possibility that this bacterial extract might eventually complement the current COVID-19 ther-
apeutic toolkit. Here we discuss how our results and those from other groups are fostering progress in this emerging
field of research.
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Introduction

A novel coronavirus, severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), emerged at the end of 2019 and rapidly
spread across the world causing the Coronavirus disease of 2019
(COVID-19) global pandemic [1,2]. The initial steps of SARS-
CoV-2 infection are mediated by the binding of viral spike (S) pro-
tein to its receptor angiotensin-converting enzyme 2 (ACE2) [3-5].
Cellular entry of the virus depends on S protein cleavage by cellu-
lar proteases (reviewed in Jackson et al. [6]), in particular, trans-
membrane protease serine 2 (TMPRSS2) [3]. The S1 proteolytic
subunit of the S protein thus generated binds ACE2, while the S2
subunit mediates fusion of viral and cellular membranes [3,6].
Together, these two events are required for the efficient infection
of target cells by SARS-CoV-2. The respiratory system is the main
target of SARS-CoV-2 because multiple airway epithelial cell
types express ACE2 [7,8] and the virus is preferentially spread by
aerosol [9]. However, epithelial cells in other organs, such as the
intestine and kidney, also express ACE2 and can become infected
[10,11]. By April 2020, COVID-19 infections were detected in
over 100 countries. To protect vulnerable populations and prevent
overloading public health systems, entire countries went into lock-
down and introduced harsh measures such as mandatory masking
and social distancing [12-14]. Luckily, innovative technologies
and massive investments by a number of governments allowed an
unprecedentedly fast development of vaccines and drugs that could
slow down the spread of the virus and decrease mortality rates [15-
18]. Despite these advances, though, COVID-19 endures as a seri-
ous global threat to public health and well-being. Indeed, rapidly
arising mutated variants of SARS-CoV-2 undermine the effective-
ness of vaccines and drugs based on virus blocking-antibodies
[19,20]. Immunity induced by previous infections and existing
vaccines appears to wane over time [21]. Furthermore, vaccine
hesitancy is widespread and many of the new drugs are pro-
hibitively expensive. All of this implies that a significant propor-
tion of the population remains susceptible to SARS-CoV-2 infec-
tion. Moreover, with the setting in of COVID-19 fatigue and the
lifting of travel restrictions and mandatory masking, the risk of
flareups in the number and severity of COVID-19 infections
remains high. Clearly, the public health and social complexities of
this unprecedented situation call for new drugs and treatments that
not only mitigate the spread of SARS-CoV-2 but are also safe and
widely affordable.

OM-85 might be one such drug. OM-85 is a standardized, low-
endotoxin alkaline lysate of 21 bacterial strains from five genera
(Moraxella, Hemophilus, Klebsiella, Staphylococcus and
Streptococcus) found in the human airways [22]. The lysate was
shown to have immunomodulatory [23] and anti-viral [24,25]
properties, and is widely used to prevent recurrent upper respirato-
ry infections in adults and children [26,27], with an impeccable
safety profile [26,28]. Moreover, OM-85 reduced the rate and
duration of wheezing attacks in pre-school children with acute res-
piratory infections [29] and increased the time to severe lower res-
piratory illnesses in at-risk infants [30]. Because wheezing-induc-
ing lower respiratory tract infections are common harbingers of
childhood asthma [31,32], an NIH-sponsored trial
(NCTO02148796) is currently testing whether OM-85 given to high-
risk, 6-18 months old infants for 10 days, monthly, for two consec-
utive years can prevent or delay the development of wheezing or
asthma-like symptoms during a three-year observation period off
therapy in these young children.

We recently demonstrated that airway administration of OM-
85 prevents cardinal manifestations of asthma in mouse models
even when allergens, rather than viruses, induce those manifesta-
tions [33]. These effects depend primarily on profound reprogram-
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ming of innate immune responses in the lung [33]. It was from
these mechanistic asthma studies that the first, unexpected sugges-
tion of a protective effect of OM-85 against SARS-CoV-2 was pro-
vided. Indeed, while analyzing the impact of OM-85 on the mouse
lung transcriptome, we found that the lysate downregulates the
expression of Ace2, the primary SARS-CoV-2 receptor [34].
Notably, OM-85 downregulated Ace2 (as well as Tmprss2) in wild-
type mice from two different strains (BALB/c and C57BL6), but
not in MyD&8/Trif-deficient mice, pointing to a central role of
innate immunity in these effects of OM-85 [34]. Needless to say,
these results (initially obtained in the early spring of 2020, right at
the time when COVID-19 was becoming a true pandemic), war-
ranted our attention. However, further developing this project in
mice would have been problematic because mice are not naturally
susceptible to SARS-CoV-2(35). Therefore, the potential role of
OM-85 in protecting against COVID-19 was evaluated in vitro
using human epithelial cells [34].

Impact of OM-85 on discrete events in
SARS-CoV-2 epithelial cell infection

Effects on S protein-mediated epithelial cell binding
and entry

As we discussed, the first step in SARS-CoV-2 infection is the
binding of the S protein to epithelial cells [3-5]. Therefore, we
designed a specific assay to evaluate the effect of OM-85 on the
binding of recombinant His-tagged S1 protein to the epithelial cell
membrane using flow cytometry with fluorescently labeled anti-
His antibodies [34]. Experiments were conducted on two epithelial
cell lines: Vero E6, which are highly susceptible to infection with
SARS-CoV-2 and derive from the kidney of an African green mon-
key, and Calu-3, adenocarcinoma from human lung. OM-85 dose-
dependently inhibited binding of SARS-CoV-2 S1 protein to both
cell lines by up to 70% [34].

Cell surface binding of S1 protein is only the first step in the
viral infection process. Then, viral particles enter the cell — a step
which, in the case of SARS-CoV-2, is mediated by host proteases
that cleave the viral S protein (reviewed in Jackson et al. [6]). The
effect of OM-85 on S protein-mediated cell entry was tested using
recombinant lentiviral particles that are pseudotyped with SARS-
CoV-2 S protein and carry GFP reporter [34]. Pretreatment of Vero
EG6 cells with OM-85 reduced the number of green fluorescent cells
transduced with SARS-CoV-2 S protein-pseudotyped lentivirus by
over 50% [34]. Using a similar approach, another group found that
OM-85 strongly and dose-dependently inhibited SARS-CoV-2 S
protein-mediated entry of pseudotyped lentiviral particles into
human BEAS-2B and Nuli bronchial epithelial cell lines [36].
Furthermore, we demonstrated that OM-85 specifically affected
SARS-CoV-2-dependent events because numbers of cells trans-
duced with a control VSV-G-pseudotyped lentivirus were
unchanged after treatment with the lysate [34].

Effects on ACE2 and TMPRSS2 expression

Although a number of mechanisms might be responsible for
the OM-85-induced inhibition of SARS-CoV-2 S protein-mediated
epithelial cell binding and entry [6], we focused on ACE2, which
serves as the main receptor for this virus [3-5]. First, we studied
whether OM-85 affects ACE2 protein expression on the epithelial
cell surface. Flow cytometry with two different fluorochrome-con-
jugated anti-ACE2 antibodies showed that OM-85 dose-depen-
dently decreased ACE2 surface expression on both Vero E6 and
Calu-3 cells [34]. Another study that relied on Western blotting to
measure ACE2 in BEAS-2B and Nuli cells as well as primary



Multidisciplinary Respiratory Medicine 2023 18:906 - V. Pivniouk and D. Vercelli

bronchial epithelial cells from four healthy donors found signifi-
cantly reduced ACE2 protein levels in cells treated daily with OM-
85 (36). Both studies showed that OM-85 downregulates ACE2
protein expression by inhibiting ACE2 transcription [34,36]. We
found that the lysate significantly decreased ACE2 mRNA levels in
epithelial cell lines from lung (Calu-3), kidney (Vero E6) and colon
(Caco-2), as well as primary bronchial epithelial cells from healthy
donors [34]. Fang et al. on the other hand reported combined
results from a different set of primary and immortalized human
bronchial epithelial cells [36].

While binding of SARS-CoV-2 to target cells is mediated by
ACE2, viral entry into these cells requires proteolytic cleavage of
the viral S protein by the endogenous transmembrane protease ser-
ine 2 (TMPRSS2) [3]. To understand whether this step in the viral
life cycle is also targeted by OM-85, we used quantitative RT-PCR
to measure TMPRSS2 mRNA levels in Vero E6, Calu-3, and Caco-
2 cells, as well as in normal primary bronchial epithelial cells.
TMPRSS? transcription was strongly and significantly inhibited by
OM-85 in all cells tested, albeit to a varying degree and with a dif-
ferent kinetics [34]. Strong and significant OM-85-induced inhibi-
tion of TMPRSS? transcription in human bronchial epithelial cells
was also independently reported by others, who also used Western
blotting to demonstrate decreased levels of TMPRSS2 protein in
OM-85-treated cells [36].

These data from two independent studies indicate that down-
regulation of ACE2 and TMPRSS?2 expression is a/the major mech-
anism underlying OM-85-induced inhibition of SARS-CoV-2 S
protein-mediated binding and cell entry. Furthermore, the decrease
in ACE2 and TMPRSS2 mRNA levels strongly suggest that this
downregulation is transcriptionally mediated. Functional evidence
for the notion that transcriptional inhibition of the major SARS-
CoV-2 S receptor is necessary for OM-85-dependent SARS-CoV-
2 suppression in epithelial cells was obtained by comparing the
effects of OM-85 on S1 protein binding in Vero E6 and Calu-3
epithelial cells, which naturally express ACE2, with those seen in
transfected HEK293T cells, in which stable human ACE?2 expres-
sion is driven by a heterologous CMV promoter. Unlike Vero E6
and Calu-3 cells, ACE2/HEK293T cells incubated with the same
dose of OM-85 showed neither ACE2 downregulation nor a
decrease in S1 binding [34]. Further experiments demonstrated
that OM-85 was also unable to affect the entry of S protein-pseu-
dotyped lentivirus into ACE2/HEK293T cells, thereby confirming
the dependence of the lysate’s effects on OM-85-responsive ACE2
transcriptional regulation [34].

Inhibition of SARS-CoV-2 epithelial cell infection

The ability of OM-85 to inhibit S protein-mediated epithelial
cell binding and virus cell entry suggested that the lysate might
protect against COVID-19. To directly assess whether OM-85 sup-
presses epithelial cell infection with live SARS-CoV-2, we pre-
treated Vero or Calu-3 cells with different concentrations of OM-
85 for 72 or 96 hours and then infected the cells with SARS-CoV-
2 (isolate USA-WA1/ 2020). OM-85 dose-dependently inhibited
SARS-CoV-2 infection in both cell lines. The inhibition was sig-
nificant even at the lowest lysate concentration at all time points
tested [34]. Of note, OM-85-induced suppression of SARS-CoV-2
infection in vitro was observed in epithelial cells from different
organs.

Where we are...

SARS-CoV-2 infection is a complex process that starts with
the binding of viral spike protein to ACE2 on the surface of target
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cells. Cleavage of viral S protein by cellular proteases initiates
fusion of viral and cellular membranes and leads to viral entry into
target cells [6]. Immediately after entry, viral genomic RNA is
released, translated, and proteolytically processed into proteins
that form the viral replication and transcription complex. This
complex is responsible for replication of viral genomic RNA and
transcription of viral structural proteins. New viral particles are
assembled in the endoplasmic reticulum and Golgi compartments
of infected cells and released by exocytosis (reviewed in V'Kovski
et al. [37]).

Potentially, every step of the SARS-CoV-2 life cycle can be
targeted for therapeutic purposes. Most of the vaccines currently in
use aim to induce antibody response against the viral S protein to
prevent it from binding ACE2. Therapeutic monoclonal antibodies
against the S protein, such as bamlanivimab/etesevimab and
casirivimab/imdevimab [38,39] as well as convalescent plasma
have similar mechanism of action. Some protease inhibitors can
block SARS-CoV-2 entry into the target cell, while others (such as
nirmatrelvir/ritonavir) interfere with the production of viral pro-
teins responsible for its replication. Another class of therapeutics
(e.g., molnupiravir) inhibit replication of viral RNA by RNA-
dependent RNA polymerase. Our work suggests that like vaccines,
OM-85 may inhibit SARS-CoV-2 binding to its receptor. However,
unlike vaccines, OM-85 targets not the virus but the receptor itself.
Our study [34] demonstrated that OM-85 efficiently inhibit S1-
mediated binding of SARS-CoV-2 to epithelial target cells by
downregulating ACE2 expression on their surface. S protein-medi-
ated viral cell entry was also strongly suppressed [34]. In addition
to decreased ACE2 expression, OM-85-induced inhibition of
TMPRSS?2, which both we and others observed [34,36], was also
likely to contribute to these effects.

In addition to ACE2 and TMPRSS2, other host cell factors that
have been suggested to mediate or modulate SARS-CoV-2 infec-
tion [6] appear to be targeted by OM-85. For instance, heparan sul-
fate (HS) was shown to promote the interaction between S protein
and ACE2 [40,41]. Incubation of epithelial cells with OM-85 for 3
or more days significantly and dose-dependently decreased the
concentration of cellular heparan sulfate while soluble heparan sul-
fate was increased [36]. These effects have been hypothesized to
play a protective role in SARS-CoV-2 infection by inhibiting viral
binding to ACE2 or sequestering the virus. The increase in soluble
heparan sulfate also correlated with increased production of hep-
aranase after OM-85 treatment, but the significance of this obser-
vation is unclear because the role of heparanase in SARS-CoV-2
infection remains controversial. Fang et al also reported significant
increases in soluble (s)ACE2 concentrations in cultures of human
bronchial epithelial cells treated with OM-85 for 4-5 days [36].
Interestingly, OM-85 also upregulated expression of a disintegrin
and metalloprotease 17 (ADAM17) ] which was implicated in
SACE2 shedding [42,43]. While the role of SACE2 in the patho-
physiology of SARS-CoV-2 infection is unclear, increased ACE2
shedding may contribute to OM-85-mediated inhibition of SARS-
CoV-2 infection by decreasing the availability of membrane
ACE2. It is also worth mentioning that besides its specific inhibito-
ry effects on SARS-CoV-2 infection mediated by ACE2 and
TMPRSS2 downregulation, OM-85 has general anti-viral proper-
ties that are well-documented in humans [25,27,44] and mice
[24,45,46]. OM-85 might inhibit viral infections by mobilizing
monocytic cells and upregulating production of interferon [45,46],
which can inhibit SARS-CoV-2 [47].
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...and what is next

The scenario highlighted by the findings discussed above, and
especially the ability of OM-85 to target early stages of SARS-
CoV-2 infection, raises the possibility that the lysate might help
prevent infection and/or decrease disease severity by limiting viral
spread in vivo. Moreover, while the emergence of new SARS-CoV-
2 variants with mutated S proteins is decreasing the effectiveness
of existing vaccines, OM-85 would be expected to retain its activ-
ity against these variants because it targets the receptor, not the
virus. Indeed, OM-85 might even prevent or limit infection by
other coronaviruses, as long as they use ACE2 as their receptor.

Needless to say, the therapeutic potential and indications of
OM-85 will remain speculative until its effects on SARS-CoV-2
receptor expression and infection are assessed directly in vivo, and
optimal therapeutic regimens are experimentally identified.
Moreover, besides affecting ACE2 and TMPRSS2 expression,
OM-85 has well-documented anti-viral properties [24,25,27,44-
46] that have been proposed to rely on monocyte mobilization and
interferon upregulation [45,46]. The extent to which these proper-
ties might contribute to SARS-CoV-2 inhibition should also be
determined. Finally, it will be critical to assess whether OM-85
administration effectively suppresses SARS-CoV-2 infection in
cell types other than epithelial cells — first and foremost, endothe-
lial cells, which are emerging as viral targets critical for COVID-
19 pathogenesis [48,49]. Despite these important lingering issues,
the robust safety record of OM-85 [23,26,28] and its approval for
clinical use in many countries, combined with an impressive body
of mechanistic evidence, imply that this lysate deserves serious
consideration as a potential treatment for COVID-19.
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