Neutrophil dysfunction in bronchiectasis: Pathophysiological insights and emerging targeted therapies
Keywords:
Bronchiectasis, neutrophilic inflammation, brensocatib, dipeptidyl peptidase-1 inhibitors, precision medicine.Abstract
Bronchiectasis is a heterogeneous, chronic airway disease characterized by irreversible bronchial dilation, persistent infection, and neutrophilic inflammation. As traditional treatments often fail to address the underlying pathophysiology, particularly the central role of dysfunctional neutrophils, this review explores recent advances in the understanding of neutrophil-driven mechanisms in bronchiectasis and highlights emerging targeted therapies for this condition. A comprehensive literature review of studies published between 2020 and 2025 focusing on neutrophil activity, biomarkers, and clinical trials evaluating novel anti-inflammatory agents for the treatment of bronchiectasis was conducted. Data were synthesized from experimental models, randomized controlled trials (WILLOW and ASPEN), and expert consensus guidelines (ERS 2023–2024). These results indicate that neutrophils contribute to tissue destruction in bronchiectasis via serine proteases and excessive neutrophil extracellular trap (NET) formation. Key emerging therapies include DPP-1 inhibitors (e.g., brensocatib), CXCR2 antagonists, PI3K inhibitors, and NET-targeting therapies. Biomarkers, such as neutrophil elastase activity, sputum procalcitonin, and NMR-derived metabolic phenotypes, may help personalize therapy, and combination treatment strategies alongside precision medicine are reshaping the therapeutic landscape of ABPA. Although targeting neutrophil dysfunction offers a promising avenue for advancing bronchiectasis care, balancing immunomodulation and infection control remains a challenge. The integration of novel therapies with biomarker-guided treatment and treatable trait approaches is essential to improve the outcomes of this complex disease.
References
1. Chang AB, Bell SC, Byrnes CA, Dawkins P, Holland AE, Kennedy E, et al. Thoracic Society of Australia and New Zealand (TSANZ) position statement on chronic suppurative lung disease and bronchiectasis in children, adolescents and adults in Australia and New Zealand. Respirology 2023;28(4):339-49. doi:10.1111/resp.14479
2. Laird P, Ball N, Brahim S, Brown H, Chang AB, Cooper M, et al. Prevalence of chronic respiratory diseases in Aboriginal children: A whole population study. Pediatr Pulmonol 2022;57(12):3136-44. doi:10.1002/ppul.26148
3. Al-Jahdhami I, Al-naamani K, Al-Mawali A, Bennji SM. Respiratory Complications after COVID-19. Oman Med J 2022;37(1):e343. doi:10.5001/omj.2022.52
4. Chen Z, Li X, Shi H, Huang Y, Liu J. Causal relationship between rheumatoid arthritis and bronchiectasis: a bidirectional mendelian randomization study. Arthritis Res Ther 2024;26(1):104. doi:10.1186/s13075-024-03336-3
5. Kim SH, Yang B, Yoo JY, Cho JY, Kang H, Shin YM, et al. Clinical characteristics, radiological features, and disease severity of bronchiectasis according to the spirometric pattern. Sci Rep 2022;12(1):13167. doi:10.1038/s41598-022-17085-3
6. Ekkelenkamp MB, Díez-Aguilar M, Tunney MM, Elborn JS, Fluit AC, Cantón R. Establishing Antimicrobial Susceptibility Testing Methods and Clinical Breakpoints for Inhaled Antibiotic Therapy. Open Forum Infect Dis 2022;9(4):ofac082. doi:10.1093/ofid/ofac082
7. Queen J, Zhang J, Sears CL. Oral antibiotic use and chronic disease: long-term health impact beyond antimicrobial resistance and Clostridioides difficile. Gut Microbes 2020;11(4):1092-1103. doi:10.1080/19490976.2019.1706425
8. Aliberti S, Sotgiu G, Blasi F, Saderi L, Posadas T, Martinez Garcia MA. Blood eosinophils predict inhaled fluticasone response in bronchiectasis. Eur Respir J 2020;56(2):2000453. doi:10.1183/13993003.00453-2020
9. Cipolla D, Zhang J, Korkmaz B, Chalmers JD, Basso J, Lasala D, et al. Dipeptidyl peptidase-1 inhibition with brensocatib reduces the activity of all major neutrophil serine proteases in patients with bronchiectasis: results from the WILLOW trial. Respir Res 2023;24(1):133. doi:10.1186/s12931-023-02444-z
10. Plichta J, Kuna P, Panek M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: recent developments and future perspectives. Front Immunol 2023;14:1207641. doi:10.3389/fimmu.2023.1207641
11. Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022;31(163):210241. doi:10.1183/16000617.0241-2021
12. Belchamber KBR, Hughes MJ, Spittle DA, Walker EM, Sapey E. New Pharmacological Tools to Target Leukocyte Trafficking in Lung Disease. Front Immunol 2021;12:704173. doi:10.3389/fimmu.2021.704173
13. Shute JK. Heparin, Low Molecular Weight Heparin, and Non-Anticoagulant Derivatives for the Treatment of Inflammatory Lung Disease. Pharmaceuticals (Basel) 2023;16(4):584. doi:10.3390/ph16040584
14. Reynolds D, Kollef M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021;81(18):2117-31. doi:10.1007/s40265-021-01635-6
15. Herbert JA, Deng Y, Hardelid P, Robinson E, Ren L, Moulding D, et al. β2-integrin LFA1 mediates airway damage following neutrophil transepithelial migration during respiratory syncytial virus infection. Eur Respir J 2020;56(2):1902216. doi:10.1183/13993003.02216-2019
16. Adrover JM, Carrau L, Daßler-Plenker J, Bram Y, Chandar V, Houghton S, et al. Disulfiram inhibits neutrophil extracellular trap formation and protects rodents from acute lung injury and SARS-CoV-2 infection. JCI Insight 2022;7(5):e157342. doi:10.1172/jci.insight.157342
17. Herman KD, Wright CG, Marriott HM, McCaughran SC, Bowden KA, Collins MO, et al. The EGFR/ErbB inhibitor neratinib modifies the neutrophil phosphoproteome and promotes apoptosis and clearance by airway macrophages. Front Immunol 2022;13:956991. doi:10.3389/fimmu.2022.956991
18. Li Y, Tan R, Li R, Tian R, Liu Z, Wang X, et al. PKM2/STAT1-mediated PD-L1 upregulation on neutrophils during sepsis promotes neutrophil organ accumulation by serving an anti-apoptotic role. J Inflamm (London) 2023;20(1):16. doi:10.1186/s12950-023-00341-2 Erratum in: J Inflamm (Lond) 2024;21(1):35. doi:10.1186/s12950-024-00406-w
19. Qu M, Chen Z, Qiu Z, Nan K, Wang Y, Shi Y, et al. Neutrophil extracellular traps-triggered impaired autophagic flux via METTL3 underlies sepsis-associated acute lung injury. Cell Death Discov 2022;8(1):375. doi:10.1038/s41420-022-01166-3
20. Paris D, Palomba L, Mirra V, Borrelli M, Corcione A, Santamaria F, et al. NMR Profiling of Exhaled Breath Condensate Defines Different Metabolic Phenotypes of Non-Cystic Fibrosis Bronchiectasis. Int J Mol Sci 2020;21(22):8600. doi:10.3390/ijms21228600
21. Margaroli C, Fram T, Sharma NS, Patel SB, Tipper J, Robison SW, et al. Interferon-dependent signaling is critical for viral clearance in airway neutrophils. JCI Insight 2023;8(10):e167042. doi:10.1172/jci.insight.167042
22. Shih VH, Jison M, Bark E, Venerus M, Meyers O, Chalmers JD. The Bronchiectasis Exacerbation Diary: a novel patient-reported outcome for non-cystic fibrosis bronchiectasis. ERJ Open Res 2023;9(3):00712-2022. doi:10.1183/23120541.00712-2022
23. Artaraz A, Crichton ML, Finch S, Abo-Leyah H, Goeminne P, Aliberti S, et al. Development and initial validation of the bronchiectasis exacerbation and symptom tool (BEST). Respir Res 2020;21(1):18. doi:10.1186/s12931-019-1272-y
24. Hassanein EHM, Sayed GA, Alzoghaibi AM, Alammar AS, Abdel-Wahab BA, Abd El-Ghafar OAM, et al. Azithromycin Mitigates Cisplatin-Induced Lung Oxidative Stress, Inflammation and Necroptosis by Upregulating SIRT1, PPARγ, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022;16(1):52. doi:10.3390/ph16010052
25. Thng KX, Tiew PY, Mac Aogáin M, Narayana JK, Jaggi TK, Ivan FX, et al. Sputum metagenomics in bronchiectasis reveals pan-European variation: an EMBARC-BRIDGE study. Eur Respir J 2025;66(2):2500054. doi:10.1183/13993003.00054-2025
26. Xu MJ, Dai B. Inhaled antibiotics therapy for stable non-cystic fibrosis bronchiectasis: a meta-analysis. Ther Adv Respir Dis 2020;14:1753466620936866. doi:10.1177/1753466620936866
27. Cordeiro R, Choi H, Haworth CS, Chalmers JD. The Efficacy and Safety of Inhaled Antibiotics for the Treatment of Bronchiectasis in Adults: Updated Systematic Review and Meta-Analysis. Chest 2024;166(1):61-80. doi:10.1016/j.chest.2024.01.045
28. Fernández-Barat L, Vázquez Burgos N, Alcaraz V, Bueno-Freire L, López-Aladid R, Cabrera R, et al. The value of biofilm testing to guide antimicrobial stewardship in chronic respiratory diseases. Front Cell Infect Microbiol 2023;13:1142274. doi:10.3389/fcimb.2023.1142274
29. Falciani C, Zevolini F, Brunetti J, Riolo G, Gracia R, Marradi M, et al. Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Pseudomonas aeruginosa Infections. Int J Nanomedicine 2020;15:1117-28. doi:10.2147/IJN.S218966
30. Lo CY, Wang CH, Wang CW, Chen CJ, Huang HY, Chung FT, et al. Increased Interleukin-17 and Glucocorticoid Receptor-β Expression in Interstitial Lung Diseases and Corticosteroid Insensitivity. Front Immunol 2022;13:905727. doi:10.3389/fimmu.2022.905727
31. An TJ, Kim JH, Hur J, Park CK, Lim JU, Kim S, et al. Tiotropium Bromide Improves Neutrophilic Asthma by Recovering Histone Deacetylase 2 Activity. J Korean Med Sci 2023;38(12):e91. doi:10.3346/jkms.2023.38.e91
32. Brown MA, Jabeen M, Bharj G, Hinks TSC. Non-typeable Haemophilus influenzae airways infection: the next treatable trait in asthma?. Eur Respir Rev 2022;31(165):220008. doi:10.1183/16000617.0008-2022
33. Holland AE, Spathis A, Kristoffer Marsaa, Bausewein C, Ahmadi Z, Burge AT, et al. European Respiratory Society Clinical Practice Guideline on symptom management for adults with serious respiratory illness. Eur Respir J 2024;63(6):2400335-2400335. doi:10.1183/13993003.00335-2024
34. Poerio N, Riva C, Olimpieri T, Rossi M, Lorè NI, De Santis F, et al. Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiol Spectr 2022;10(1):e0254621. doi:10.1128/spectrum.02546-21
35. Ozyigit LP, Monteiro W, Rick EM, Satchwell J, Pashley CH, Wardlaw AJ. Fungal bronchitis is a distinct clinical entity which is responsive to antifungal therapy. Chron Respir Dis 2021;18:1479973120964448. doi:10.1177/1479973120964448
36. Chalmers JD, Burgel PR, Daley CL, De Soyza A, Haworth CS, Mauger D, et al, ASPEN Investigators. Phase 3 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis. N Engl J Med 2025;392(16):1569-81. doi:10.1056/NEJMoa2411664
37. Shoemark A, Shteinberg M, De Soyza A, Haworth CS, Richardson H, Gao Y, et al. Characterization of Eosinophilic Bronchiectasis: A European Multicohort Study. Am J Respir Crit Care Med 2022;205(8):894-902. doi:10.1164/rccm.202108-1889oc
38. Cahn A, Hamblin JN, Robertson J, Begg M, Jarvis E, Wilson R, et al. An Inhaled PI3Kδ Inhibitor Improves Recovery in Acutely Exacerbating COPD Patients: A Randomized Trial. Int J Chron Obstruct Pulmon Dis 2021;16:1607-19. doi:10.2147/COPD.S309129
39. Dowey R, Cole J, Thompson AAR, Hull RC, Huang C, Whatmore J, et al. Enhanced neutrophil extracellular trap formation in COVID-19 is inhibited by the protein kinase C inhibitor ruboxistaurin. ERJ Open Res 2022;8(2):00596-2021. doi:10.1183/23120541.00596-2021
40. Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023;14:1059343. doi:10.3389/fphar.2023.1059343
41. Miravitlles M, Auladell-Rispau A, Monteagudo M, Vázquez-Niebla JC, Mohammed J, Nuñez A, et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur Respir Rev 2021;30(160):210075. doi:10.1183/16000617.0075-2021
42. Janson C. Treatment with inhaled corticosteroids in chronic obstructive pulmonary disease. J Thorac Dis 2020;12(4):1561-1569. doi:10.21037/jtd.2020.02.51
43. Good W, Jeon G, Zeng I, Storey L, Qiao H, Jones S, et al. Sputum procalcitonin: a potential biomarker in stable bronchiectasis. ERJ Open Res 2021;7(4):00285-2021. doi:10.1183/23120541.00285-2021
44. Xu X, Sankar R. Classification and Recognition of Lung Sounds Using Artificial Intelligence and Machine Learning: A Literature Review. Big Data and Cogn Comput 2024;8(10):127. doi:10.3390/bdcc8100127
45. Morabito A, Simone GD, Pastorelli R, Brunelli L, Ferrario M. Algorithms and tools for data-driven omics integration to achieve multilayer biological insights: a narrative review. J Translational Med 2025;23:425. doi:https://doi.org/10.1186/s12967-025-06446-x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Mattioli 1885 has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.