Unmasking hypoxemia: the role of standard PaO₂ in interpreting Arterial blood gas analysis

Unmasking hypoxemia: the role of standard PaO₂ in interpreting Arterial blood gas analysis

Authors

  • Fabiano Di Marco Università degli Studi di Milano, SC Pneumologia ASST Papa Giovanni XXIII, Bergamo
  • Federico Raimondi SC Pneumologia, ASST Papa Giovanni XXIII Bergamo
  • Gianluca Imeri SC Pneumologia ASST Papa Giovanni XXIII, Bergamo
  • Christian Mazzola Università degli Studi di Milano, SC Pneumologia ASST Papa Giovanni XXIII, Bergamo
  • Simone Pappacena Università degli Studi di Milano, SC Pneumologia ASST Papa Giovanni XXIII, Bergamo
  • Simone Vargiu Università degli Studi di Milano, SC Pneumologia ASST Papa Giovanni XXIII, Bergamo
  • Michele Capelli Università degli Studi di Milano, SC Pneumologia ASST Papa Giovanni XXIII, Bergamo
  • Giorgio Lorini Università degli Studi di Pavia
  • Juan Camilo Signorello Università degli Studi di Milano, Divisione di Pneumologia, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco Milano
  • Paolo Solidoro Università degli Studi di Torino, SC Pneumologia, Città della salute e della scienza Torino
  • Dejan Radovanovic Università degli Studi di Milano, Divisione di Pneumologia, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco Milano
  • Luca Novelli SC Pneumologia, ASST Papa Giovanni XXIII Bergamo https://orcid.org/0000-0002-2705-248X

Keywords:

ARF, Acute respiratory failure, P-SILI, ABG

Abstract

Background: In the assessment of acute respiratory failure (ARF), PaO2/FIO2 ratio is widely used, but may be misleading in the presence of hyperventilation-induced hypocapnia. The standard PaO2 (stPaO2), a theoretical value corrected for PaCO2, may improve clinical interpretation of gas exchange severity.
Methods: We conducted an online survey among Italian physicians using a case vignette of three hypothetical patients with identical PaO2 values but differing PaCO2 levels. Participants were asked to rank the severity of the cases based solely on arterial blood gas analysis (ABG). A second round was offered after introducing the concept of stPaO2 and providing corresponding values.
Results: A total of 2,241 (8.9%) physicians (median age 53 years, 54.1% male) completed the first round and 1,324 (59%) completed the second one of the survey. Initially, only 9.2% correctly identified the clinical severity 
pattern–this increased significantly to 16.1% after introducing stPaO2 (p < 0.01). The improvement rate was higher among physicians with less than 10 years of clinical experience. Performance improved across all specialties, particularly in emergency and intensive care medicine.
Conclusions: The introduction of stPaO2 significantly enhanced physicians’ ability to interpret ABG results in ARF. Although its calculation assumes ideal physiological conditions, stPaO2 remains a useful tool for unmasking hypoxemia in hyperventilating patients. Including stPaO2 in ABG reports may support more accurate clinical decision-making, particularly in emergency and critical care settings.

Author Biography

Luca Novelli, SC Pneumologia, ASST Papa Giovanni XXIII Bergamo

Physician

Pulmonary Medicine Unit

References

1. Kufel TJ, Grant BJB. Arterial blood-gas monitoring: respiratory assessment. In: Tobin MJ, ed. Principles and practice of intensive care monitoring. New York: McGraw-Hill; 1998. p.197–215.

2. West JB, Luks A. West’s respiratory physiology: the essentials. Philadelphia: Wolters Kluwer; 2020.

3. Aboab J, Louis B, Jonson B, Brochard L. Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Intensive Care Med 2006;32(10):1494–7. doi:10.1007/s00134-006-0337-9.

4. Raimondi F, Novelli L, Marchesi G, Fabretti F, Grazioli L, Riva I, et al. Worsening of gas exchange parameters at high FIO2 in COVID-19: misleading or informative? Multidiscip Respir Med 2021;16(1):759. doi:10.4081/mrm.2021.759.

5. Tobin MJ, Jubran A, Laghi F. PaO2/FIO2 ratio: the mismeasure of oxygenation in COVID-19. Eur Respir J 2021;57(3):2100274. doi:10.1183/13993003.00274-2021.

6. Riley RL, Lilienthal JL Jr. On the determination of the physiologically effective pressures of oxygen and carbon dioxide in alveolar air. Am J Physiol 1946;147:191–8. doi:10.1152/ajplegacy.1946.147.1.191.

7. Mays EE. An arterial blood gas diagram for clinical use. Chest 1973;63(5):793–800. doi:10.1378/chest.63.5.793.

8. Prediletto I, D’Antoni L, Carbonara P, Daniele F, Dongilli R, Flore R, et al. Standardizing PaO2 for PaCO2 in P/F ratio predicts in-hospital mortality in acute respiratory failure due to COVID-19: a pilot prospective study. Eur J Intern Med 2021;92:48–54. doi:10.1016/j.ejim.2021.06.002.

9. Gattinoni L, Busana M, Camporota L. Standardised PaO2/FiO2 ratio in COVID-19: added value or risky assumptions? Eur J Intern Med 2021;92:31–3. doi:10.1016/j.ejim.2021.09.004.

10. Brochard L, Slutsky AS, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017;195(4):438–42. doi:10.1164/rccm.201605-1081CP.

11. Cho YI, Johnson TP, VanGeest JB. Enhancing surveys of health care professionals: a meta-analysis of techniques to improve response. Eval Health Prof 2013;36(3):382–407. doi:10.1177/0163278713496425.

.

Published

12-11-2025

Issue

Section

Short Reports

How to Cite

1.
Di Marco F, Raimondi F, Imeri G, et al. Unmasking hypoxemia: the role of standard PaO₂ in interpreting Arterial blood gas analysis. Multidiscip Respir Med. 2025;20. doi:10.5826/mrm.2025.1055